APPENDIX C

SITE INSPECTION WORKSHEETS

This appexdix consists of worksheets that can be used to generate an SI site score. Completion of these worksheets is not required, but the SI investigator must evaluate an SI score, either by these worksheets, *PREscore*, or other Regional scoring tools.

The worksheets consist of instructions and data tables to be filled in with scores from HRS reference tables. The data tables may also call for Data Type and References.

DATA TYPE: The Data Type columns should be filled in with an **H**, **Q**, or **+** if the data are HRS quality and well documented. The Data Type column should be filled in with an **E**, **X**, or **-** if the data represent estimates, approximations, or are not fully documented. This type identifies data gaps for the expanded SI to investigate.

REFERENCES: The Reference columns should be filled with coded reference numbers. The numbered reference list should be attached or the numbering should be cross-referenced to the SI Narrative Report.

The SI investigator will need the current Superfund Chemical Data Matrix (SCDM) OSWER Directive 9345.1-13 (revised semi-annually) to complete these worksheets.

SITE INSPECTION WORKSHEETS

CERCLIS IDENTIFICATION NUMBER

	• .**						
		SITE L	OCATION				
SITE NAME: LEG	GAL, COMMON, O	R DESCRIPTIVE NAM	E OF SITE				
STREET ADDRE	SS, ROUTE, OR S	SPECIFIC LOCATION II	DENTIFIER				
CITY			STATE	ZIP CODE	TELEPHONE ()		
COORDINATES	LATITUDE and L	ONGITUDE	TOWNSHIP, RA	NGE, AND SECTION	N		
		OWNER/OPERATO	R IDENTIFICA	TION			
OWNER	· · · · · · · · · · · · · · · · · · ·	OWNER/OFERATO	OPERATOR	111011			
OWNER ADDRE	SS		OPERATOR ADDRESS				
CITY			CITY				
STATE	ZIP CODE	TELEPHONE ()	STATE	ZIP CODE	TELEPHONE ()		
		SITE EV	ALUATION				
AGENCY/ORGA	NIZATION				- 		
INVESTIGATOR							
CONTACT							
ADDRESS							
CITY			STATE		ZIP CODE		
TELEPHONE ()				-			

GENERAL INFORMATION

Site Description and	Operational History: Provide a brief description of the site and its
operational history. State	Operational History: Provide a brief description of the site and its e the site name, owner, operator, type of facility and operations, size of property, and years of waste generation. Summarize waste treatment, storage, or disposal
active or inactive status	and years of waste generation. Summarize waste treatment, storage, or disposal
activities that have or ma	y have occurred at the site; note whether these activities are documented or
alleged Identify all source	ce types and prior spills, floods, or fires. Summarize highlights of the PA and
other investigations. Cit	a references
other investigations. On	

GENERAL INFORMATION (continued)

Site Sketch: Provide a sketch of the site. Indicate all pertinent features of the site and nearby environments including sources of wastes, areas of visible and buried wastes, buildings, residences, access roads, parking areas, fences, fields, drainage patterns, water bodies, vegetation, wells, sensitive environments, and other features.

GENERAL INFORMATION (continued)

Source Descriptions: Describe all sources at the site. Identify source type and relate to waste disposal operations. Provide source dimensions and the best available waste quantity information. Describe the condition of sources and all containment structures. Cite references.

SOURCE TYPES

Landfill: A man-made (by excavation or construction) or natural hole in the ground into which wastes have come to be disposed by backfilling, or by contemporaneous soil deposition with waste disposal.

Surface Impoundment: A natural topographic depression, man-made excavation, or diked area, primarily formed from earthen materials (lined or unlined) and designed to hold an accumulation of liquid wastes, wastes containing free liquids, or sludges not backfilled or otherwise covered; depression may be wet with exposed liquid or dry if deposited liquid has evaporated, volatilized or leached; structures that may be described as lagoon, pond, aeration pit, settling pond, tailings pond, sludge pit; also a surface impoundment that has been covered with soil after the final deposition of waste materials (i.e., buried or backfilled).

Drum: A portable container designed to hold a standard 55-gallon volume of wastes.

Tank and Non-Drum Container: Any device, other than a drum, designed to contain an accumulation of waste that provides structural support and is constructed primarily of fabricated materials (such as wood, concrete, steel, or plastic); any portable or mobile device in which waste is stored or otherwise handled.

Contaminated Soil: An area or volume of soil onto which hazardous substances have been spilled, spread, disposed, or deposited.

Pile: Any non-containerized accumulation above the ground surface of solid, non-flowing wastes; includes open dumps. Some types of waste piles are:

Chemical Waste Pile: A pile consisting primarily of discarded chemical products, by-

products, radioactive wastes, or used or unused feedstocks.

Scrap Metal or Junk Pile: A pile consisting primarily of scrap metal or discarded durable

goods goods (such as appliances, automobiles, auto parts, batteries, etc.) composed of materials containing hazardous

substances.

Tailings Pile: A pile consisting, primarily of any combination of overburden

from a mining operation and tailings from a mineral mining,

beneficiation, or processing operation.

Trash Pile: A pile consisting primarily of paper, garbage, or discarded non-

durable durable goods containing hazardous substances.

Land Treatment: Landfarming or other method of waste management in which liquid wastes or sludges are spread over land and tilled, or liquids are injected at shallow depths into soils.

Other: Sources not in categories listed above.

GENERAL INFORMATION (continued)

Source Description: Include description of containment per pathway for ground water (see HRS Tab 3-2), surface water (see HRS Table 4-2), and air (see HRS Tables 6-3 and 6-9).
Harandana Wasta Onentity (HWO) Calculations Cl Tables 4 and 2 (Cas LIDC Tables 2.5. 2.0. and
Hazardous Waste Quantity (HWQ) Calculation: SI Tables 1 and 2 (See HRS Tables 2-5, 2-6, and 5-2).
Attach additional pages, if necessary HWQ =

SI TABLE 1: HAZARDOUS WASTE QUANTITY (HWQ) SCORES FOR SINGLE SOURCE SITES AND FORMULAS FOR MULTIPLE SOURCE SITES

		Sing (assig	le Source Sites ed HWQ scores)
(Column 1)	(Column 2)	(Column 3)	(Column 4)
TIER	Source Type	HWQ = 10	HWQ = 100
A Hazardous Constituent Quantity	N/A	HWQ = 1 if Hazardous Constituent Quantity data are complete HWQ = 10 if Hazardous Consituent Quantity data are not complete	>100 to 10,000 lbs
B Hazardous Wastestream Quantity	N/A	#500,000 lbs	>500,000 to 50 million lbs
	Landfill	#6.75 million ft ³ #250,000 yd ³	>6.75 million to 675 million ft ³ >250,000 to 25 million yd ³
	Surface impoundment	#6,750 ft ³ #250 yd ³	>6,750 to 675,000 ft ³ >250 to 25,000 yd ³
	Drums	#1,000 drums	>1,000 to 1,00,000 drums
C Volume	Tanks and non-drum containers	#50,000 gallons	>50,000 to 5 million gallons
	Contaminated soil	#6,75 million ft ³ #250,000 yd ³	>6.750 million to 675 million ft ³ >250,000 to 25 million yd ³
	Pile	#6,750 ft ³ #250 yd ³	>6,750 to 675,000 ft ³ >250 to 25,000 yd ³
	Other	#6,750 ft ³ #250 yd ³	>6,750 to 675,000 ft ³ >250 to 25,000 yd ³
	Landfill	#340,000 ft ² #7.8 acres	>340,000 to 34 million ft ² >7.8 to 780 acres
_	Surface impoundment	#1,300 ft ² #0.029 acres	>1,300 to 130,000 ft ² >0.029 to 2.9 acres
D Area	Contaminated soil	#3.4 million ft ² #78 acres	>3.4 million to 340 million ft ² >78 to 7,800 acres
	Pile	#1,300 ft ² #0.029 acres	>1,300 to 130,000 ft ² >0.029 to 2.9 acres
	Land treatment	#27,000 ft ² #0.62 acres	>27,000 to 2.7 million ft ² >0.62 to 62 acres

TABLE 1 (CONTINUED)

	Single Source Sites (assigned HWQ scores)			
(Column 5)	(Column 6)	(Column 7) Divisors for	(Column 2)	(Column 1)
HWQ = 10,000	HWQ = 1,000,000	Assigning Source WQ Values	Source Type	TIER
>10,000 to 1 million lbs	>1 million lbs	lbs + 1	N/A	A Hazardous constituent Quantity
>50 Million to 5 billion lbs	> 5 billion lbs	lbs + 5,000	N/A	B Hazardous Wastestream Quantity
>675 million to 67.5 billion ft ³ >25 million to 2.5 billion yd ⁴	>67.5 billion ft ³ >2.5 billion yd ³	ft ³ + 67,500 yd ³ + 2,500	Landfill	
>675,000 to 67.5 million ft ³ >25,000 to 2.5 million yd ³	>67.5 million ft ³ >2.5 million yd ³	ft ³ + 67.5 yd ³ + 2.5	Surface Impoundment	
>100,000 to 10 million drums	>10 million drums	drums + 10	Drums	
>5 million to 500 million gallons	>500 million gallons	gallons + 500	Tanks and non-drum	C Volume
>675 million to 67.5 billion ft ³ >25 million to 2.5 billion yd ⁹	>67.5 billion ft ³ >2.5 billion yd ³	ft ³ + 67,500 yd ³ + 2,500	containers	Volume
>675,000 to 67.5 million ft ³ >25,000 to 2.5 million yd ³	>67.5 million ft ³ >2.5 million yd ³	ft ³ + 67.5	Contaminated Soil	
>675,000 to 67.5 million ft ³ >25,000 to 2.5 million yd ³	>67.5 million ft ³ >2.5 million yd ³	yd ³ + 2.5 ft ³ + 67.5	Pile	
>25,000 to 2.5 million yu	72.3 million yu	yd ³ + 2.5	Other	
>34 million to 3.4 billion ft ² >780 to 78,000 acres	>3.4 billion ft ² >78,000 acres	ft ² + 3,400 acres + 0.078	Landfill	
>130,000 to 13 million ft ² >2.9 to 290 acres	>13 million ft ² >290 acres	ft ² + 13 acres + 0.00029	Surface Impoundment	D
>340 million to 34 billion ft ² >7,800 to 780,000 acres	>34 billion ft ² >780,000 acres	ft ² + 34,000 acres + 0.78	Contaminated Soil	Area
>130,000 to 13 million ft ² >2.9 to 290 acres	>13 million ft ² >290 acres	ft ² + 13 acres + 0.00029	Pile	
>2.7 million to 270 million ft ² >62 to 6,200 acres	>270 million ft ² >6,200 acres	ft ² + 270 acres + 0.0062	Land Treatment	

HAZARDOUS WASTE QUANTITY (HWQ) CALCULATION

For each migration pathway, evaluate HWQ associated with sources that are available (i.e., incompletely contained) to migrate to that pathway. (Note: If *Actual Contamination Targets* exist for ground water, surface water, or air migration pathways, assign the calculated HWQ score or 100, whichever is greater, as the HWQ score for that pathway.) For each source, evaluate HWQ for one or more of the four tiers (SI Table 1; HRS Table 2-5) for which data exist: constituent quantity, wastestream quantity, source volume, and source area. Select the tier that gives the highest value as the source HWQ. Select the source volume HWQ rather than source area HWQ if data for both tiers are available.

Column 1 of SI Table 1 indicates the quantity tier. Column 2 lists source types for the four tiers. Columns 3, 4, 5, and 6 provide ranges of waste amount for sites with only one source, corresponding to HWQ scores at the tops of the columns. Column 7 provides formulas to obtain source waste quantity values at sites with multiple sources.

- 1. Identify each source type.
- 2. Examine all waste quantity data available for each source. Record constituent quantity and waste stream mass or volume. Record dimensions of each source.
- 3. Convert source measurements to appropriate units for each tier to be evaluated.
- 4. For each source, use the formulas in the last column of SI Table 1 to determine the waste quantity value for each tier that can be evaluated. Use the waste quantity value obtained from the highest tier as the quantity value for the source.
- 5. Sum the values assigned to each source to determine the total site waste quantity.
- 6. Assign HWQ score from SI Table 2 (HRS Table 2-6).

Note these exceptions to evaluate soil exposure pathway HWQ (see HRS Table 5-2):

- The divisor for the area (square feet) of a landfill is 34,000.
- The divisor for the area (square feet) of a pile is 34.
- Wet surface impoundments and tanks and non-drum containers are the only sources for which volume measurements are evaluated for the soil exposure pathway.

SI TABLE 2: HWQ SCORES FOR SITES

Site WQ Total	HWQ Score
0	0
1ª to 100	1 ^b
>100 to 10,000	100
>10,000 to 1 million	10,000
>1 million	1,000,000

If the WQ total is between 0 and 1, round it to 1.

b If the hazardous constituent quantity data are not complete, assign the score of 10.

SI TABLE 3: WASTE CHARACTERIZATION WORKSHEET

Site Name:		References_	
Sources:			
 1	4	7	
2.	5.	8.	
3.	6.	9.	

									SURFACE	WATER PATH	WAY				
SOURCE	HAZARDOUS SUBSTANCE	TOXICITY	WA	OUND TER HWAY			OVERLAND	/FLOOD N	MIGRATION					WATER TO	
			GW Mobility (HRS Table 3-8	Tox/ Mobility Value (HRS Table 3-9)	Per (HRS Tables 4-10 and 4-11)	Tox/Per Value (HTS Table 4-12)	Bioac Pot. (HRS Table 4-15)	Tox/ Pers/ Bioac Value (HRS Table 4-16)	Ecotox/ Pers (HRS Table 4-19)	Ecotox (HRS Table 4-20)	Ecotox/ Pers/ Bioacc Value (HRS Table 4-21)	Tox/ Mob/ Pers Value (HRS Table 4-26)	Tox/ Mob/ Pers/ Bioacc Value (HRS Table 4-28)	Ecotox/ Mob/ Pers Value (HRS Table 4-29)	Ecotox/ Mob/ Per/ Bioacc Value (HRS Table 4-30)

Ground Water Observed Release Substances Summary Table

On SI Table 4, list the hazardous substances associated with the site detected in ground water samples for that aquifer. Include only those substances directly observed or with concentrations significantly greater than background levels. Obtain toxicity values from the Superfund Chemical Data Matrix (SCDM). Assign mobility a value of 1 for all observed release substances regardless of the aquifer being evaluated. For each substance, multiply the toxicity by the mobility to obtain the toxicity/mobility factor value; enter the highest toxicity/mobility value for the aquifer in the space provided.

Ground Water Actual Contamination Targets Summary Table

If there is an observed release at a drinking water well, enter each hazardous substance meeting the requirements for an observed release by well and sample ID on SI Table 5 and record the detected concentration. Obtain benchmark, cancer risk, and reference dose concentrations from SCDM. For MCL and MCLG benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages for the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage or the percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate the population using the well as a Level II target for that aquifer.

SI TABLE 4: GROUND WATER OBSERVED RELEASE SUBSTANCES (BY AQUIFER)

Sample ID	Hazardous Substance	Bckgrd Conc.	Toxicity/ Mobility	References
	Highe	est Toxicity/Mobility		

SI TABLE 5: GROUND WATER ACTUAL CONTAMINATION TARGETS

Well ID:		Le	vel I Le	vel II	Population Serv	ed	_ References _	
Sample ID	Hazardous Substance	Conc. (μg/L)	Benchmark Conc. (MCL or MCLG)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RfD	% of RfD
			Highest Percent		Sum of Percents		Sum of Percents	
Well ID:		Le	vel I Le	vel II	_	ed	_	
Sample ID	Hazardous Substance	Conc. (μg/L)	Benchmark Conc. (MCL or MCLG)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RfD	% of Rfg
			Highest Percent		Sum of Percents		Sum of Percents	

GROUND WATER PATHWAY GROUND WATER USE DESCRIPTION

Describe generalized stratigraph, aquifers, municipal and private wells	
Show Calculation of Ground Wat3er Drinking Water Populations for each Provide apportionment calculations for blended supply systems. County average number of persons per household: Reference	

GROUND WATER PATHWAY WORKSHEET

LIKELIHOOD OF RELEASE	Score	Data Type	Rofs
OBSERVED RELEASE: If sampling data or direct observation support a release to the aquifer, assign a score of 550. Record			
observed release substances on SI Table 4. 2. POTENTIAL TO RELEASE: Depth to aguifer: feet. If			
sampling data do not support a release to the aquifer, and the site is in karst terrain or the depth to aquifer is 70 feet or less, assign a			
score of 500; otherwise, assign a score of 340. Optionally, evaluate potential to release according to HRS Section 3.			
LR =			
TARGETS			
Are any wells part of a blended system? Yes No	Γ		
If yes, attach a page to show apportionment calculations.			
3. ACTUAL CONTAMINATION TARGETS: If analytical evidence indicates that any target drinking water well for the aquifer has been			
exposed to a hazardous substance from the site, evaluate the factor score for the number of people served (SI Table 5).			
Level I: people x 10 =			
Level II: people x 1 = Total =			
 POTENTIAL CONTAMINATION TARGETS: Determine the number of people served by drinking water wells for the aquifer or overlying 			
aquifers that are not exposed to a hazardous substance from the site; record the population for each distance category in SI Table 6a			
or 6b. Sum the population values and multiply by 0.1.			
 NEAREST WELL: Assign a score of 50 for any Level I Actual Contamination Targets for the aquifer or overlying aquifer. Assign a 			
score of 45 if there are Level II targets but no Level I targets. If no			
Actual Contamination Targets exist, assign the Nearest Well score from SI Table 6a or 6b. If no drinking water wells exist within 4 miles,			
assign 0.			
6. WELLHEAD PROTECTION AREA (WHPA): If any source lies			
within or above a WHPA for the aquifer, or if a ground water observed release has occurred within a WHPA, assign a score of			
20; assign 5 if neither condition applies but a WHPA is within 4			
miles; otherwise assign 0. 7. RESOURCES: Assign a score of 5 if one or more ground water			
resource applies; assign 0 if none applies.			
Irrigation (5 acre minimum) of commercial food crops or commercial forage crops			
Watering of commercial livestock			
Ingredient in commercial food preparation Supply for commercial agreements.			
 Supply for commercial aquaculture Supply for a major or designated water recreation area, 			
excluding drinking water use			
Sum of Targets T=			1

SI TABLE 6 (From HRS TABLE 3-12): VALUES FOR POTENTIAL CONTAMINATION GROUND WATER TARGET POPULATIONS

SI Table 6a: Other Than Karst Aquifers

1								Populat	ion Serve	d by Wel	ls within Di	stance Cat	egory				
	Distance from Site	Рор.	Nearest Well (choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1000	1001 to 3000	3001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,000 to 3,000,000	Pop. Value	Ref.
	0 to $\frac{1}{4}$ mile		20	4	17	53	164	522	1,633	5,214	16,325	52,137	163,246	521,360	1,632,455		
	$>\frac{1}{4}$ to $\frac{1}{2}$ mile		18	2	11	33	102	324	1,013	3,233	10,122	32,325	101,213	323,243	1,012,122		
	$>\frac{1}{2}$ to 1 mile		9	1	5	17	52	167	523	1,669	5,224	16,684	52,239	166,835	522,385		
C-16	> 1 to 2 miles		5	0.7	3	10	30	94	294	939	2,939	9,385	29,384	93,845	293,842		
	> 2 to 3 miles		3	0.5	2	7	21	68	212	678	2,122	6,778	21,222	67,777	212,219		
	>3 to 4 miles		2	0.3	1	4	13	42	131	417	1,306	4,171	13,060	41,709	130,596		
•	Nearest	Well =									·				Sum =		

SI TABLE 6 (From HRS TABLE 3-12): VALUES FOR POTENTIAL CONTAMINATION GROUND WATER TARGET POPULATIONS (continued)

SI Table 6b: Karst Aquifers

ſ								Populat	on Serve	d by W el	ls within Di	stance Cat	egory				
	Distance from Site	Pop.	Nearest Well (choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1000	1001 to 3000	3001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,000 to 3,000,000	Pop. Value	Ref.
	0 to $\frac{1}{4}$ mile		20	4	17	53	164	522	1,633	5,214	16,325	52,137	163,246	521,360	1,632,455		
	$>\frac{1}{4}$ to $\frac{1}{2}$ mile		20	2	11	33	102	324	1,013	3,233	10,122	32,325	101,213	323,243	1,012,122		
- 2	> 1/2 to 1 mile		20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227		
17	> 1 to 2 miles		20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227		
	> 2 to 3 miles		20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227		,e
	>3 to 4 miles		20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227		
-	Nearest \	Well =													Sum =		

GROUND WATER PATHWAY WORKSHEET (concluded)

WAS	STE CHARACTERISTICS		Score	Data Type	not Apply
8.	If any Actual Contamination Targoverlying aquifers, assign the carguantity score or a score of 100, Contamination Targets exist, as quantity score calculated for sour ground water.	iculated hazardous waste whichever is greater; if no Actual sign the hazardous waste			
9.	Assign the highest ground water Table 3 or 4.	r toxicity/mobility value from SI			
10.	Multiply the ground water toxicity quantity scores. Assign the Wastable below: (from HRS Table 2)	ste Characteristics score from the			
	Product	WC Score			
	0	0			
	>0 to <10 10 to <100	2			
	100 to <1,000	2			
	1,000 to < 10,000	6			
	10,000 to <1E + 05	10			
	1E + 05 to <1E + 06	18			
	1E + 06 to <1E + 07 1E + 07 to <1E + 08	32 56			
-	1E + 08 or greater	100			
<u></u>					<u> </u>
		WC =	:1		

Multiply LR by T and by WC. Divide the product by 82,500 to obtain the ground water pathway score for each aquifer. Select the highest aquifer score. If the pathway score is greater than 100, assign 100.

GROUND WATER PATHWAY SCORE:

LR X T X WC 82,500

(Maximum of 100)

SURFACE WATER PATHWAY

Sketch of the Surface Water Migration Route: Label all surface water bodies. Include runoff route and drainage direction, probable point of entry, and 15-mile target distance limit. Mark sample locations, intakes, fisheries, and sansitive environments. Indicate flow directions, tidal influence, and rate.
sensitive environments. Indicate flow directions, tidal influence, and rate.

SURFACE WATER PATHWAY

Surface Water Observed Release Substances Summary Table

On SI Table 7, list the hazardous substances detected in surface water samples for the watershed, which can be attributed to the site. Include only those substances in observed releases (direct observation) or with concentration levels significantly above background levels. Obtain toxicity, persistence, bioaccumulation potential, and ecotoxicity values from SCDM. Enter the highest toxicity/persistence, toxicity/persistence/bioaccumulation, and ecotoxicity/persistence/ecobioaccumulation values in the spaces provided.

- TP = Toxicity x Persistence
 TPB = TP x bioaccumulation
- ETPB = EP x bioaccumulation (EP = ecotoxicfty x persistence)

Drinking Water Actual Contamination Targets Summary Table

For an observed release at or beyond a drinking water intake, on SI Table 8 enter each hazardous substance by sample ID and the detected concentration. For surface water sediment samples detecting a hazardous substance at or beyond an intake, evaluate the intake as Level If contamination. Obtain benchmark, cancer risk, and reference dose concentrations for each substance from SCDM. For MCL and MCLG benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages of the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage or the percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate the population served by the intake as a Level I target. If the percentages are less than 100% or all are N/A, evaluate the population served by the intake as a Level II target.

SI TABLE 7:	SURFACE WATER	OBSERV	ED RELEASE	SUBSTAN	ICES	_		
Sample ID	Hazardous Substance	Bckgrd, Conc.	Toxicity/ Persistence	Toxicity/ Persis./ Bioaccum	Ecotoxicity/ Persis/ Ecobioaccum	References		
CI TADIE 9.	SURFACE WATER	hest Values		THAL CON	TAMINATION	TARCETS		
	Sample Type					Population Serve	d Refere	inces
TITIZAN ID.	Cample Type					, opalation serve		
Sample ID	Hazardous Substance	Conc. (μg/L)	Benchmark Conc. (MCL or MCLG)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RfD	% of RfD
			Highest Percent		Sum of Percents	<u> </u>	Sum of Percents	
Intake ID:	Sample Type		Lev	vel I	Level II	Population Serve		nces
		Conc.	Benchmark Conc.	% of	Cancer Risk	% of Cancer		
Sample ID	Hazardous Substance	(μg/L)	(MCL or MCLG)		Conc.	Risk Conc.	RID	% of RfD
			Highest		Sum of Percents		Sum of	

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT WORKSHEET

	(ELIHOOD OF RELEASE- (ERLAND/FLOOD MIGRATION		Score	Data Type	Refs
	OBSERVED RELEASE: If sampling data or direct ob	pservation	00010	1,50	11010
	support a release to surface water in the watershed, a				
	of 550. Record observed release substances on SI				
2.	POTENTIAL TO RELEASE: Distance to surface wat	ter: (feet)			
	If sampling data do not support a release to surface w	vater in the			
	watershed, use the table below to assign a score from				
	below based on distance to surface water and flood	frequency.			
	Distance to surface water <2500 feet	500			
	Distance to surface water >2500 feet, and:				
	Site in annual or 10-yr floodplain	500			
!	Site in 100-yr floodplain	400			
	Site in 500-yr floodplain	300			
	Site outside 500-yr floodplain	100			
	Optionally, evaluate surface water potential to release	e			
	according to HRS Section 4.1.2.1.2				
		LR =			
		-n - L		ı	
LIF	KELIHOOD OF RELEASE			Data	
	KELIHOOD OF RELEASE BOUND WATER TO SURFACE WATER MIGRA	ATION	Score	Data Type	Refs
	OUND WATER TO SURFACE WATER MIGRA		Score	Data Type	Refs
GF	OUND WATER TO SURFACE WATER MIGRA	bservation	Score		Refs
GF	OUND WATER TO SURFACE WATER MIGRATION OBSERVED RELEASE: If sampling data or direct of	oservation assign a score	Score		Refs
GR	OBSERVED RELEASE: If sampling data or direct of support a release to surface water in the watershed, a of 550. Record observed release substances on SI	oservation assign a score Table 7.	Score		Refs
GR	OUND WATER TO SURFACE WATER MIGRATION OBSERVED RELEASE: If sampling data or direct of support a release to surface water in the watershed, a of 550. Record observed release substances on SI TE: Evaluate ground water to surface water migration	bservation assign a score Table 7.	Score		Refs
GR	OBSERVED RELEASE: If sampling data or direct of support a release to surface water in the watershed, a of 550. Record observed release substances on SI	bservation assign a score Table 7.	Score		Refs
GR 1.	OBSERVED RELEASE: If sampling data or direct of support a release to surface water in the watershed, a of 550. Record observed release substances on SI TE: Evaluate ground water to surface water migration surface water body that meets all of the following core	bservation assign a score Table 7. only for a nditions:	Score		Refs
GR	OBSERVED RELEASE: If sampling data or direct of support a release to surface water in the watershed, a of 550. Record observed release substances on SI TE: Evaluate ground water to surface water migration surface water body that meets all of the following cor A portion of the surface water is within 1 mile of site s	bservation assign a score Table 7. only for a nditions:	Score		Refs
1. NO	OBSERVED RELEASE: If sampling data or direct of support a release to surface water in the watershed, a of 550. Record observed release substances on SI TE: Evaluate ground water to surface water migration surface water body that meets all of the following cord A portion of the surface water is within 1 mile of site sa containment factor greater than 0.	bservation assign a score Table 7. only for a nditions: sources having	Score		Refs
GR 1.	OBSERVED RELEASE: If sampling data or direct of support a release to surface water in the watershed, a of 550. Record observed release substances on SI TE: Evaluate ground water to surface water migration surface water body that meets all of the following cor A portion of the surface water is within 1 mile of site s a containment factor greater than 0. No aquifer discontinuity is established between the site of the surface water is within 1 mile of site so a containment factor greater than 0.	bservation assign a score Table 7. only for a nditions: sources having	Score		Refs
1. NC 1) 2)	OBSERVED RELEASE: If sampling data or direct of support a release to surface water in the watershed, a of 550. Record observed release substances on SI of 550. Record observed release	bservation assign a score Table 7. only for a nditions: sources having source and the	Score		Refs
1) 1) 2) 3)	OBSERVED RELEASE: If sampling data or direct of support a release to surface water in the watershed, a of 550. Record observed release substances on SITE: Evaluate ground water to surface water migration surface water body that meets all of the following corn A portion of the surface water is within 1 mile of site sa containment factor greater than 0. No aquifer discontinuity is established between the sabove portion of the surface water body. The top of the uppermost aquifer is at or above the barrace water.	bservation assign a score Table 7. only for a nditions: sources having source and the	Score		Refs
1. NC 1) 2) 3) Ele	OBSERVED RELEASE: If sampling data or direct of support a release to surface water in the watershed, a of 550. Record observed release substances on SI TE: Evaluate ground water to surface water migration surface water body that meets all of the following cor A portion of the surface water is within 1 mile of site s a containment factor greater than 0. No aquifer discontinuity is established between the sabove portion of the surface water body. The top of the uppermost aquifer is at or above the besurface water.	bservation assign a score Table 7. only for a nditions: sources having source and the	Score		Refs
1. NC 1) 2) 3) Ele	OBSERVED RELEASE: If sampling data or direct of support a release to surface water in the watershed, a of 550. Record observed release substances on SITE: Evaluate ground water to surface water migration surface water body that meets all of the following corn A portion of the surface water is within 1 mile of site sa containment factor greater than 0. No aquifer discontinuity is established between the sabove portion of the surface water body. The top of the uppermost aquifer is at or above the barrace water.	bservation assign a score Table 7. only for a nditions: sources having source and the	Score		Refs
1) 2) 3) Ele	OBSERVED RELEASE: If sampling data or direct of support a release to surface water in the watershed, a of 550. Record observed release substances on SI of 550. Record observed release substances on SI of 550. Record observed release substances on SI of TE: Evaluate ground water to surface water migration surface water body that meets all of the following coronal provided provided the surface water is within 1 mile of site so a containment factor greater than 0. No aquifer discontinuity is established between the subsequence portion of the surface water body. The top of the uppermost aquifer is at or above the besurface water. Evaluate ground water to surface water body.	bservation assign a score Table 7. conly for a nditions: sources having source and the cottom of the	Score		Refs
1) 2) 3) Ele	OBSERVED RELEASE: If sampling data or direct of support a release to surface water in the watershed, a of 550. Record observed release substances on SI of 550. Record observed release	bservation assign a score Table 7. conly for a nditions: sources having source and the cottom of the	Score		Refs
1) 2) 3) Ele	OBSERVED RELEASE: If sampling data or direct of support a release to surface water in the watershed, a of 550. Record observed release substances on SI of 550. Record observed release	bservation assign a score Table 7. conly for a nditions: sources having source and the cottom of the	Score		Refs
1) 2) 3) Ele	OBSERVED RELEASE: If sampling data or direct of support a release to surface water in the watershed, a of 550. Record observed release substances on SI of 550. Record observed release	bservation assign a score Table 7. conly for a nditions: sources having source and the cottom of the	Score		Refs

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT WORKSHEET (CONTINUED)

DRINKING WATER THREAT TARGETS	Score	Data Type	Refs
Record the water body type, flow, and number of people served by each drinking water intake within the target distance limit in the watershed. If there is no drinking water intake within the target distance limit, assign 0 to factors 3, 4, and 5.			
Intake Name Water Body Type Flow People Served			
Are any intakes part of a blended system? Yes No If yes, attach a page to show apportionment calculations.			
 ACTUAL CONTAMINATION TARGETS: If analytical evidence indicates a drinking water intake has been exposed to a hazardous substance from the site, list the intake name and evaluate the factor score for the drinking water population (SI Table 8). 			
Level I: people x 10 = Total =			
 POTENTIAL CONTAMINATION TARGETS: Determine the number of people served by drinking water intakes for the watershed that have not been exposed to a hazardous substance from the site. Assign the population values from SI Table 9. Sum the values and multiply by 0.1. 			
5. NEAREST INTAKE: Assign a score of 50 for any Level I Actual Contamination Drinking Water Targets for the watershed. Assign a score of 45 if there are Level II targets for the watershed, but no Level I targets. If no Actual Contamination Drinking Water Targets exist, assign a score for the intake nearest the PPE from SI Table 9. If no drinking water intakes exist, assign 0.			
6. RESOURCES: Assign a score of 5 if one or more surface water resource applies; assign 0 if none applies. • Irrigation (5 acre minimum) of commercial food crops or commercial forage crops • Watering of commercial livestock • Ingredient in commercial food preparation • Major or designated water recreation area, excluding drinking water use			
SUM OF TARGETS T			1

SI TABLE 9 (From HRS Table 4-14): DILUTION-WEIGHTED POPULATION VALUES FOR POTENTIAL CONTAMINATION FOR SURFACE WATER MIGRATION PATHWAY

				•		Num	ber of	people)	***		
Type of Surface Water Body	Pop.	Nearest Intake	0	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	Pop. Value
Minimal Stream (<10 cfs)		20	0	4	17	53	164	522	1,633	5,214	16,325	
Small to moderate stream (10 to 100 cfs)		2	0	0.4	2	5	16	52	163	521	1,633	
Moderate to large stream (> 100 to 1,000 cfs)		0	0	0.04	0.2	0.5	2	5	16	52	163	
Large Stream to river (>1,000 to 10,000 cfs)		0	0	0.004	0.02	0.05	0.2	0.5	2	5	16	
Large River (> 10,000 to 100,000 cfs)		0	0	0	0.002	0.005	0.02	0.05	0.2	0.5	16	
Very Large River (>100,000 cfs)		0	0	0	0	0.001	0.002	0.005	0.02	0.05	0.2	
Shallow ocean zone or Great Lake (depth < 20 feet)		0	0	0	0.002	0.005	0.02	0.05	0.2	0.5	2	
Moderate ocean zone or Great Lake (Depth 20 to 200 feet)		0	0	0	0	0.001	0.002	0.005	0.02	0.05	0.2	
Deep ocean zone or Great Lake (depth > 200 feet)		0	0	0	0	0	0.001	0.003	0.008	0.03	0.08	
3-mile mixing zone in quiet flowing river (≥ 10 cfs)		10	0	2	9	26	82	261	817	2,607	8,163	
Nearest In	itake =										Sum =	

References	

SURFACE WATER PATHWAY

Human Food Chain Actual Contamination Targets Summary Table

On SI Table 10, list the hazardous substances detected in sediment, aqueous, sessile benthic organism tissue, or fish tissue samples (taken from fish caught within the boundaries of the observed release) by sample ID and concentration. Evaluate fisheries within the boundaries of observed releases detected by sediment or aqueous samples as Level II, if at least one observed release substance has a bioaccumulation potential factor value of 500 or greater (see SI Table 7). Obtain benchmark, cancer risk, and reference dose concentrations from SCDM. For FDAAL benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages for the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate this portion of the fishery as subject to Level I concentrations. If the percentages are less than 100% or all are N/A, evaluate the fishery as a Level II target.

Sensitive Environment Actual Contamination Targets Summary Table

On SI Table 11, list each hazardous substance detected in aqueous or sediment samples at or beyond wetlands or a surface water sensitive environment by sample ID. Record the concentration. If contaminated sediments or tissues are detected at or beyond a sensitive environment, evaluate the sensitive environment as Level II. Obtain benchmark concentrations from SCDM. For AWQC/AALAC benchmarks, determine the highest percentage of benchmark of the substances detected in aqueous samples. If benchmark concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage equals or exceeds 100%, evaluate that part of the sensitive environment subject to Level I concentrations. If the percentage is less than 100%, or all are N/A, evaluate the sensitive environment as Level II.

ishery ID:	Sa	mple Type		Leve		Level II	References	
Sample ID	Hazardous Substance	Conc. (mg/kg)	Benchmark Concentration (FDAAL)	% of Benchmark	Cancer Risk Concentration.	% of Cancer Risk Concentration	RfD	% of Rf[
			Highest Percent		Sum of Percents		Sum of Percents	
I TABLE 1	1: SENSITIVE ENVI	RONMENT	ACTUAL CO	NTAMINAT	ION TARGETS	S FOR WATE	. – RSHED	
	D: Sar				11		Environment Valu	е
Sample ID	Hazardous Substance	Conc (μg/L)	Benchmark Concentration (AWQC or AALAC)	% of Benchmark	References			
		W-3 -1						
			Highest Percent		# P.T 1			
Environment II	D: Sar	n ple Type		Leve	11	Level II	Environment Valu	ө
		Conc	Benchmark Concentration (AWQC or	% of				
Sample ID	Hazardous Substance	(μg/L)	AALAC)	Benchmark	References			
, , , , , , , , , , , , , , , , , , , 			Highest Percent					

SURFACE WATER PATHWAY (continued) ENVIRONMENTAL THREAT WORKSHEET

When measuring length of wetlands that are located on both sides of a surface water body, sum both frontage lengths. For a sensitive environment that is more than one type, assign a value for each type.

ENVIR	ONMENTAL	L TH	AT TARGET	S			Score	Type	Refs
sens	ord the wate sitive enviror ere is no ser gn a score o								
Environm	ent Name		Water Body Type	····	Flow				
Livioiii	IOIL IVAIIIO								
			· · · · · · · · · · · · · · · · · · ·			cfs			
 						cfs cfs		į	
II	·····				 -				
sam envi site,	pling data or ronment has record this i	r direct o s been e nformati	ON SENSITIVE E bservation indica xposed to a haz on on SI Table 1 at (SI Tables 13 a	ate any s ardous s 1, and a	sensitive substanc	e from the			
Environm	ent Name	Environi Value (S	ment Type and SI Tables 13 & 14)	Multiplie Level I, Level II		Product			
				x					
				x	a				
				x					
<u> </u>		ł		x	=				
10 00	CENTIAL CO	NITALAIN	NATION SENSIT	IVE EAN	//DONINA	Sum =			
10. PO	I EN HAL CO	NA I WINIII	MATION SENSIT	1AE E147	MINONIN	EN 15:			
Flow	Dilution Weig (SI Table 12)	ght)	Environment Typ Value (SI Tables	e and 13 & 14)	Pot. Cont.	Product			
cfs		x		x	0.1 =				
cfs		х			0.1 =				
"		^							
cfs		х		X	0.1 =				
cfs		x							
cfs		х							
L						Sum =			<u> </u>
				•		т_		I	

SURFACE WATER PATHWAY (continued) HUMAN FOOD CHAIN THREAT WORKSHEET

HUMAN FOOD CHAIN THREA	T TARGETS	Score	Data Type	Refs
target distance limit. If there is	nd flow for each fishery within the s no fishery within the target of 0 at the bottom of this page.			
Fishery Name Water Bod	y Flow cfs			
Species Produc	tionlbs/yr tionlbs/yr			
Species Produc	tionIbs/yr			
Fishery Name Water Bod	ycfs			
Species Produc	tion lbs/yr			
Species Produc	tionlbs/yr			
Fishery Name Water Bod	ycfs			
Species Produc	tion lbe/yr			
Species Produc	tionlbs/yr			
a hazardous substance with a or equal to 500 (SI Table 10), a Level I fishery. Assign 45 if the I fishery. 8. POTENTIAL CONTAMINATION If there is a release of a substance greater than or equal to 500 to within the target distance limit, fisheries, assign a score of 20 lf there is no observed release for potential contamination fis	ance with a bioaccumulation factor of a watershed containing fisheries but there are no Level I or Level II but the watershed, assign a value theries from the table below using			
the lowest flow at all fisheries				
Lowest Flow	FCI Value			
<10 cfs 10 to 100 cfs	20			
>100 cfs, coastal tidal waters,			1	1
oceans, or Great Lakes	0		l	
3-mile mixing zone in quiet flowing river	10			
	FCI Value =			
	CUM OF TARCETS T			-

SI TABLE 12 (HRS Table 4-13): SURFACE WATER DILUTION WEIGHTS

Type of Surface Water Body				
Descriptor	Flow Characteristic			
Minimal stream	< 10 cfs	1		
Small to moderate stream	10 to 100 cfs	0.1		
Moderate to large stream	> 100 to 1,000 cfs	0.01		
Large stream to river	> 1,000 to 10,000 cfs	0.001		
Large river	> 10,000 to 100,000 cfs	0.0001		
Very large river	> 100,000 cfs	0.00001		
Coastal tidal waters	Flow not applicable; depth not applicable	0.001		
Shallow ocean zone or Great Lake	Flow not applicable; depth less than 20 feet	0.001		
Moderate depth ocean zone or Great Lake	Flow not applicable; depth 20 to 200 feet	0.0001		
Deep ocean zone or Great Lake	Flow not applicable; depth greater than 200 feet	0.000005		
3-mile mixing zone in quiet flowing river	10 cfs or greater	0.5		

SI TABLE 13 (HRS TABLE 4-23): SURFACE WATER AND AIR SENSITIVE ENVIRONMENTS VALUES

SENSITIVE ENVIRONMENT	ASSIGNED VALUE
Critical habitat for Federal designated endangered or threatened species	100
Marine Sanctuary	i
National Park	Į
Designated Federal Wilderness Area	
Ecologically important areas identified under the Coastal Zone Wilderness Act	
Sensitive Areas identified under the National Estuary Program or Near Coastal	
Water Program of the Clean Water Act	
Critical Areas identified under the Clean Lakes Program of the Clean Water Act	
(subareas in lakes or entire small lakes)	
National Monument (air pathway only)	
National Seashore Recreation Area	
National Lakeshore Recreation Area	
Habitat known to be used by Federal designated or proposed endangered or threatened species	75
National Preserve	, ,
National or State Wildlife Refuge	
Unit of Coastal Barrier Resources System	
Coastal Barrier (undeveloped)	
Federal land designated for the protection of natural ecosystems	
Administratively Proposed Federal Wilderness Area	
Spawning areas critical for the maintenance of fish/shellfish species within a	
river system, bay, or estuary	
Migratory pathways and feeding areas critical for the maintenance of	
anadromous fish species within river reaches or areas in lakes or coastal	
tidal waters in which the fish spend extended periods of time	
Terrestrial areas utilized by large or dense aggregations of vertebrate animals	
(semi-aquatic foragers) for breeding	
National river reach designated as recreational	
Habitat known to be used by State designated endangered or threatened species	50
Habitat known to be used by a species under review as to its Federal endangered	
or threatened status	
Coastal Barrier (partially developed)	
Federally designated Scenic or Wild River	
State land designated for wildlife or game management	25
State designated Scenic or Wild River	
State designated Natural Area	
Particular areas, relatively small in size, important to maintenance of unique biotic communities	
State designated areas for the protection of maintenance of aquatic life under the Clean Water	5
Act	
Wetlands See SI Table 14 (Surface Water Pathway) or SI Table 23 (Air Pathway)	

SI TABLE 14 (HRS TABLE 4-24): SURFACE WATER WETLANDS FRONTAGE VALUES

Total Length of Wetlands	Assigned Value
Less than 0.1 mile	0
0.1 to 1 mile	25
Greater than 1 to 2 miles	50
Greater than 2 to 3 miles	75
Greater than 3 to 4 miles	100
Greater than 4 to 8 miles	150
Greater than 8 to 12 miles	250
Greater than 12 to 16 miles	350
Greater than 16 to 20 miles	450
Greater than 20 miles	500

SURFACE WATER PATHWAY (concluded) WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORE SUMMARY

WASTE CHARACT	ERISTICS					Score	
14. If an Actual Contamination Target (drinking water, human food							
chain, or environmental threat) exists for the watershed, assign						1	
whichever is great	the calculated hazardous waste quantity score, or a score of 100,						
		abla 7	/alaaa	-1-	\ CI		······································
15. Assign the highest							
Table 3 (no observation for	ved release) for	the naz	ardous sub	Sic	ince waste		
characterization fa	Clors Delow. MI	ntipiy e	ach by the s	iun	race water		
hazardous waste o			milline the w	as	le		
Characteristics sco	ie ioi eacii iille	al.				WC Score	(from Table)
	Substance Valu	0	HWQ	_	Product	(Maximum	
Drinking Water Threat	Oubstance valu	-	11110		1 loddet	Tinaxillalii	01 100/
Toxicity/Persistence		x					
Food Chain Threat							
Toxicity/Persistence	i						
Bioaccumulation	<u></u>	х		=			
Environmental Threat							
Ecotoxicity/Persistence/							
Ecobioaccumulation		X		==			
Product			WC Score				
0			9				
>0 to <10 10 to <100			1				
100 to <1,00	10		2				
1,000 to < 10			6				
10.000 to <1			10				
1E + 05 to <			18				
1E + 06 to <	IE + 07		32			İ	
1E + 07 to <1	IE + 08		56				
1E + 08 to <1			100				
1E + 09 to <			180			}	
1E + 10 to <1			320				
1E + 11 to <1			560				
1E + 12 or g	ealer		1000				
						l	

SURFACE WATER PATHWAY THREAT SCORES

	I likeliheard of Dalasse	Taurata (T) Cana	Pathway Waste	Threat Score
Threat	Likelihood of Release (LR) Score	Targets (T) Score	Characteristics (WC) Score (determined above)	LR x T x WC 82,500
Drinking Water				(maximum of 100)
Human Food Chain				(maximum of 100)
Environmental				(maximum of 60)

SURFACE WATER PATHWAY SCORE (Drinking Water Threat + Human Food Chain Threat + Environmental Threat)

(maximu	m of 1	100)	

SOIL EXPOSURE PATHWAY

If there is no observed contamination (e.g., ground water plume with no known surface source), do not evaluate the soil exposure pathway. Discuss evidence for no soil exposure pathway.

Soil Exposure Resident Population Targets Summary

For each property (duplicate page 35 as necessary):

If there is an area of observed contamination on the property and within 200 feet of a residence, school, or day care center, enter on Table 15 each hazardous substance by sample ID. Record the detected concentration. Obtain cancer risk, and reference dose concentration from SCDM. Sum the cancer risk and reference dose percentages for the substance listed. If cancer risk or rference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the percentage sum calculated for cancer risk or reference dose equal or exceed 100%, evaluate the residents and students as Level I. If both percentages are less than 100% or all are N/A, evaluate the targets as level II.

SI TABLE 15: SOIL EXPOSURE RESIDENT POPULATION TARGETS

Residence ID: _			Level I	Leve	III	Population	· · · · · · · · · · · · · · · · · · ·	
Sample ID	Hazardous Substance	Conc. (mg/kg)	Cancer Risk Concentration	% of Cancer Risk Conc.	RfD	% of RfD	Toxicity Value	References
		<u> </u>						
<u> </u>			<u> </u>					
			Highest Percent		Sum of Percents		Sum of Percents	
Residence ID:			Level I	l eve	111	Population		
				% of	' '' <u></u>	T operation	1	····
Sample ID	Hazardous Substance	Conc. (mg/kg)	Cancer Risk Concentration	Cancer Risk Conc.	RfD	% of RfD	Toxicity Value	References
							-	
						<u> </u>		
-								
			Highest Percent		Sum of Percents		Sum of Percents	
Residence ID:_			Level I	Leve	III	Population		
Sample ID	Hazardous Substance	Conc. (mg/kg)	Cancer Risk Concentration	% of Cancer Risk Conc.	RfD	% of RfD	Toxicity Value	References
						ļ		
						 	1	
			<u> </u>			+		
		•	Highest Percent		Sum of		Sum of	

C-35

SOIL EXPOSURE PATHWAY WORKSHEET RESIDENT POPULATION THREAT

LIKELIJOOD OF EVDONIDE		0	Data	D-4-
LIKELIHOOD OF EXPOSURE	 	Score	Туре	Refs
1. OBSERVED CONTAMINATION: If evic				
observed contamination (depth of 2 fee				
550; otherwise, assign a 0. Note that a				
score of 0 results in a soil exposure path	nway score of 0.			
	LE =			
	•		4	
TARGETS				
2. RESIDENT POPULATION: Determine	the number of people			
occupying residences or attending sch	ool or day care on or within			
200 feet of areas of observed contamin	nation (HRS section 5.1.3).			
	,			
Level I: people x 10 =				
Level I: people x 10 = Level II: people x 1 = _	Sum=			
3. RESIDENT INDIVIDUAL: Assign a sco	re of 50 if any Level I			
resident population exists. Assign a sc				
targets but no Level I targets. If no res				
no Level I or Level II targets), assign 0				
4. WORKERS: Assign a score from the ta				
number of workers at the site and near				
observed contamination associated wi				
Number of Workers	Score			
Number of Workers	0			
1 to 100	5			
101 to 1,000	10			
>1,000	15			
71,000				
E TERRESTRIAL CENCITIVE ENVIRONI	MENTS: Assists a universal			
5. TERRESTRIAL SENSITIVE ENVIRON				
each terrestrial sensitive environment (or rable 16) in an area of			
observed contamination.				
T				
Terrestrial Sensitive Environment Type	Value			
	Sum ≃			
6. RESOURCES: Assign a score of 5 if a		1.00		
following resources is present on an ar	rea of observed			
contamination at the site; assign 0 if no				
Commercial agriculture	Tio applico.		Ì	
Commercial silviculture	İ			
Commercial livestock production or	commercial livestock			
grazing	COTTRETETOIGN IIVESTOCK	•	1	
grazing			 	<u>'</u>
	Total of Targets T=		Ī	
	i Utai Uti taiyets 1=		ŀ	

SI TABLE 16 (HRS TABLE 5-5): SOIL EXPOSURE PATHWAY TERRESTRIAL SENSITIVE ENVIRONMENT VALUES

TERRESTRIAL SENSITIVE ENVIRONMENT	ASSIGNED VALUE
Terrestrial critical habit for Federal designated endangered or threatened species National Park Designated Federal Wilderness Area National Monument	100
Terrestrial habitat known to be used by Federal designated or proposed threatened or endangered species National Preserve (terrestrial) National or State terrestrial Wildlife Refuge Federal land designated for protection of natural ecosystems Administratively proposed Federal Wildness Area Terrestrial areas utilized by large or dense aggregation of animals (Vertebrate species) for breeding	75
Terrestrial habitat used by State designated endangered or threatened species Terrestrial habitat used by species under review for Federal designated endangered or threatened status	50
State lands designated for wildlife or game management State designated Natural Areas Particular areas, relatively small in size, important to maintenance of unique biotic communities	25

SOIL EXPOSURE PATHWAY WORKSHEET NEARBY POPULATION THREAT

LIK	ELIHOOD OF EXPOSURE		Score	Type	Ref.
7.	· ······,	Value			
	Area of Contamination (from SI Table 18 or HRS Table 5-7)	Value			
	Likelihood of E (from SI Table	Exposure 19 or HRS Table 5-8)			
		LE =			
TAI	RGETS		Score	Data Type	Ref.
TA 1	Assign a score of 0 if Level I or Level II reside evaluated or if no individuals live within 1/4 m an area of observed contamination. Assign a population is within 1/4 mile travel distance a	nile travel distance of a score of 1 if nearby	Score		Ref.
	Assign a score of 0 if Level I or Level II reside evaluated or if no individuals live within 1/4 m an area of observed contamination. Assign a	nile travel distance of a score of 1 if nearby and no Level I or Level distance that is not site (i.e., properties I II); record the table 20 (HRS Table 5-	Score		Ref.

SI TABLE 17 (HRS TABLE 5-6): ATTRACTIVENESS/ACCESSIBILITY VALUES

Area of Observed Contamination	Assigned Value
Designed recreational area	100
Regularly used for public recreation (for example, vacant lots in urban area)	75
Accessible and unique recreational area (for example, vacant lots in urban area)	75
Moderately accessible (may have some access improvements–for example, gravel road) with some public recreation use	50
Slightly accessible (for example, extremely rural area with no road improvement) with some public recreation use	25
Accessible with no public recreation use	10
Surrounded by maintained fence or combination of maintained fence and natural barriers	5
Physically inaccessible to public, with no evidence of public recreation use	0

SI TABLE 18 (HRS TABLE 5-7): AREA OF CONTAMINATION FACTOR VALUES

Total area of the areas of observed contamination (square feet)	Assigned Value
# to 5,000	5
> 5,000 to 125,000	20
> 125,000 to 250,000	40
> 250,000 to 375,000	60
> 375,000 to 500,000	80
> 500,000	100

SI TABLE 19 (HRS TABLE 5-8): NEARBY POPULATION LIKELIHOOD OF EXPOSURE FACTOR VALUES

AREA OF CONTAMINATION	ATTRACTIVENESS/ACCESSIBILITY FACTOR VALUE									
FACTOR VALUE	100	75	50	25	10	5	0			
100	500	500	375	250	125	50	0			
80	500	375	250	125	50	25	0			
60	375	250	125	50	25	5	0			
40	250	125	50	25	5	5	0			
20	125	50	25	5	5	5	0			
5	50	25	5	5	5	5	0			

SI TABLE 20 (HRS TABLE 5-10): DISTANCE-WEIGHTED POPULATION VALUES FOR NEARBY POPULATION THREAT

Travel Distance					Nur	nber o	f people	within	the trave	el distanc	e category	/		
Category (miles)	Pop.	0	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,001	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	Pop. Value
Greater than 0 to 1/4		0	0.1	0.4	1.0	4	13	41	130	408	1,303	4,081	13,034	
Greater than 1/4 to 1/2		0	0.05	0.2	0.7	2	7	20	65	204	652	2,041	6,517	
Greater than ½ to 1		0	0.02	0.1	0.3	1	3	10	33	102	326	1,020	3,258	
Reference(s) Sum =														

SOIL EXPOSURE PATHWAY WORKSHEET (concluded)

WASTE CHARACTERISTICS

10.	Assign the hazardous waste quantity score calculated		
11.	Assign the highest toxicity value from SI Table 1	6	
12.	Multiply the toxicity and hazardous waste quanti Waste Characteristics score from the table below	ty scores. Assign the w:	
	Product	WC Score	
	0 >0 to <10 10 to <100 100 to <1,000 1,000 to <10,000 10,000 to <1E + 05 1E + 05 to <1E + 06 1E + 06 to 1E + 07 1E + 07 to 1E +08 1E + 08 or greater	0 1 2 3 6 10 18 32 56 100	WC =
RES	SIDENT POPULATION THREAT SCORE:		
	elihood of Exposure, Question 1; Targets um of Questions 2, 3, 4, 5, 6)	LE X T X WC 82,500	
NEA	RBY POPULATION THREAT SCORE:		
	elihood of Exposure, Question 7; gets = Sum of Questions 8, 9)	82,500	

AIR PATHWAY

Air Pathway Observed Substances Summary Table

On SI Table 21, list the hazardous substances detected in air samples of a release from the site. Include only those substances with concentrations significantly greater than background levels. Obtain benchmark, cancer risk, and reference dose concentrations from SCDM. For NAAQS/NESHAPS benchmarks, determine the highest percentage of benchmark obtained for any substance. For cancer risk and reference dose, sum the percentages for the substances listed. If benchmark, cancer risk, or reference dose concentrations are not available for a particular substance, enter N/A for the percentage. If the highest benchmark percentage or the percentage sum calculated for cancer risk or reference dose equals or exceeds 100%, evaluate targets in the distance category from which the sample was taken and any closer distance categories as Level I. If the percentages are less than 100% or all are N/A, evaluate targets in that distance category and any closer distance categories that are not Level I as Level II.

SI TABLE 21: AIR PATHWAY OBSERVED RELEASE SUBSTANCES

Sample ID:	Le	vel I	Level II	Distance from So	urces (mi)	References		_
Hazardous Substance	Conc. (µg/m³)	Gaseous Particulate	Benchmark Conc. (NAAQS or NESHAPS)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RfD	% of RfD
	Highest Toxicity/ Mobility		Highest Percent		Sum of Percents		Sum of Percents	
Sample ID:	Le	vel I	Level II	Distance from So	ources (mi)	References		_
Hazardous Substance	Conc. (μg/m³)	Toxicity/ Mobility	Benchmark Conc. (NAAQS or NESHAPS)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RfD	% of RfD
	Highest Toxicity/ Mobility		Highest Percent		Sum of Percents		Sum of Percents	
Sample ID:	Lev	vel I	Level II	Distance from So	urces (mi)	References		_
Hazardous Substance	Conc. (μg/m³)	Toxicity/ Mobility	Benchmark Conc. (NAAQS or NESHAPS)	% of Benchmark	Cancer Risk Conc.	% of Cancer Risk Conc.	RfD	% of RfD
	+							
	Highest Toxicity/ Mobility		Highest Percent		Sum of Percents		Sum of Percents	

AIR PATHWAY WORKSHEET

LIKEI	LIHOOD OF RELEASE	Score	Data Type	Refs
	OBSERVED RELEASE: If sampling data or direct observation support a release to air, assign a score of 550. Record observed release substances on SI Table 21.			
	POTENTIAL TO RELEASE: If sampling data do not support a release to air, assign a score of 500. Optionally, evaluate air migration gaseous and particulate potential to release (HRS Section 6.1.2).			
	LR =			
TARG	ETS			
3.	ACTUAL CONTAMINATION POPULATION: Determine the number of people within the target distance limit subject to exposure from a release of a hazardous substance to the air.			
	a) Level I: people x 10 = b) Level II: people x 1 = Total =			3
4.	POTENTIAL TARGET POPULATION: Determine the number of people within the target distance limit not subject to exposure from a release of a hazardous substance to the air, and assign the total population score from SI Table 22. Sum the values and multiply the sum by 0.1.			
5.	NEAREST INDIVIDUAL: Assign a score of 50 if there are any Level I targets. Assign a score of 45 if there are Level II targets but no Level I targets. If no Actual Contamination Population exists, assign the Nearest Individual score from SI Table 22.			
6.	ACTUAL CONTAMINATION SENSITIVE ENVIRONMENTS: Sum the sensitive environment values (SI Table 13) and wetland acreage values (SI Table 23) for environments subject to exposure from the release of a hazardous substance to the air.			
	Sensitive Environment Type Value			
	Wetland Acreage Value			
	- Tanas			
L				
7.	POTENTIAL CONTAMINATION SENSITIVE ENVIRONMENTS: Use SI Table 24 to evaluate sensitive environments not subject to exposure from a release.			
8.	RESOURCES: Assign a score of 5 if one or more air resources apply within ½ mile of a source; assign a 0 if none applies. Commercial agriculture Commercial silviculture Major or designated recreation area			

SI TABLE 22 (FROM HRS TABLE 6-17): VALUES FOR POTENTIAL CONTAMINATION AIR TARGET POPULATIONS

				Number of People within the Distance Category											
Distance from Site	Pop.	Nearest Individual (choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,00 0	1,000,00 0 to 3,000,00 0	Pop. Value
On a source		20	4	17	53	164	522	1,633	5,214	16,325	52,137	163,246	521,360	1,632,45 5	
0 to 1/4 mile		*	1	4	13	41	131	408	1,304	4,081	13,034	40,812	130,340	408,114	
>1/4 to 1/2 mile		2	0.2	0.9	3	9	28	88	282	882	2,815	8,815	28,153	88,153	
>1/2 to 1 mile		1	0.06	0.3	0.9	3	8	26	83	261	834	2,612	8,342	26,119	
>1 to 2 miles		0	0.02	0.09	0.3	0.8	3	8	27	83	266	833	2,659	8,326	
>2 to 3 miles		0	0.009	0.04	0.1	0.4	1	4	12	38	120	375	1,199	3,755	
>3 to 4 miles		0	0.005	0.02	0.07	0.2	0.7	2	7	28	73	229	730	2,285	
	earest dual =													Sum =	

References

^{*} Score = 20 if the Nearest Individual is within 1/8 mile of a source; score = 7 if the Nearest Individual is between 1/8 and 1/4 mile of a source.

SI TABLE 23 (HRS TABLE 6-18): AIR PATHWAY VALUES FOR WETLAND AREA

Wetland Area	Assigned Value
< 1 acre	0
1 to 50 acres	25
> 50 to 100 acres	75
> 100 to 150 acres	125
> 150 to 200 acres	175
> 200 to 300 acres	250
> 300 to 400 acres	350
> 400 to 500 acres	450
>500 acres	500

SI TABLE 24: DISTANCE WEIGHTS AND CALCULATIONS FOR AIR PATHWAY POTENTIAL CONTAMINATION SENSITIVE ENVIRONMENTS

Distance	Distance Weight	Sensitive Environment Type and Value (from SI Table 13 and 20)	Product
On a Source	0.10	х	
		х	
0 to 1/4 mile	0.025	х	
		х	
		Х	
1/4 to 1/2 mile	0.0054	х	
		Х	
		Х	
1/2 to 1 mile	0.0016	х	
		Х	
		х	
1 to 2 miles	0.0005	х	
		х	
		х	
2 to 3 miles	0.00023	х	
		х	
		х	
3 to 4 miles	0.00014	х	
		х	
		х	
> 4 miles	0	х	

Total Environments Score =

AIR PATHWAY (concluded)

WASTE CHARACTERISTICS

9.	If any Actual Contamination Targets exist hazardous waste quantity score or a scono Actual Contamination Targets for the score for sources available to air migration.	e are	
10.	Assign the highest air toxicity/mobility va	alue from SI Table 21.	
11.	Multiply the air pathway toxicity/mobility Assign the Waste Characteristics score f		
	Product 0 >0 to <10 10 to <100 100 to <1,000 1,000 to 10,000 1,000 to <1E + 05 1E + 05 to <1E + 06 1E + 06 to <1E + 07 1E + 07 to < 1E + 08 1E + 08 or greater	WC Score 0 1 2 3 6 10 18 32 56 100	WC =

	LE x T x WC	
AIR PATHWAY SCORE:	82,500	(maximum of 100)

SITE SCORE CALCULATION	S	S ²
GROUND WATER PATHWAY SCORE (S _{GW})		
SURFACE WATER PATHWAY SCORE (S sw)		
SOIL EXPOSURE (S _s)		
AIR PATHWAY SCORE (S _A)		
SITE SCORE $\sqrt{\frac{S_{GW}^2 + S_{SW}^2 + S_S^2 + S_A^2}{4}}$	<u>?</u> - =	

COMMENTS		